Light Scattering

Introduction


When a beam (light-, X-ray-, neutron-, electron-,…) passes through a transparent medium without absorption nevertheless an attenuation of the intensity of the passing beam is observed because particles hit by the incident beam can act as a scattering centre emitting secondary radiation, thus dissipating energy to all directions. In the first place the effect depends on the relation of the size of the scattering particles, and the wave length of the radiation used and the type of interaction between the incident beam and the particle. In light scattering this is the interaction of the electric light vector with electrons.
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Fig. 1: scheme of a scattering experiment. In X-ray scattering the scattering angle is called 2(. For explanation of the terms, see text.

I0 = intensity of the incident beam which is a function of the wave length (, the wave vector k,
 and the polarization (. (if there is any).

I = intensity of the scattered beam with wave length (', wave vector k', and polarization (' (if there is any). Wave length (and polarization) of the incident beam and of the scattered beam can be different (but need not be).

( = scattering angle; k, k' are the wave vectors of the incident and the scattered beam, respectively, and q is the scattering vector. 

q = k-k'




(1)

k = k' = 2(((  




(2)
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  (3a, b)

k =k'  elastic scattering (s. eq. 3b)

  k ( k' inelastic scattering 


   (4a-c)

k ( k' quasi-elastic scattering

The incident beam hits the scattering centre and excites dipolar oscillations followed by emission of (secondary) radiation. The intensity of the scattered radiation is a superposition of this secondary radiation with the primary beam in the same direction. In a homogeneous medium all scattering intensity which is not parallel to the incident beam (i. e. ((( and ((0)is annihilated by destructive interference. In order to observe scattering intensity at scattering angles ( ( 0 the medium needs to be inhomogeneous (density, refractive index). These inhomogeneities can occur as fluctuations. The scattering intensity is high when the fluctuations are large. A laser beam in calm, clean air can hardly be detected at an angle of 90°. If, however, there are large fluctuations of refractivity and the density such as near phase transitions between a liquid and a gas phase (critical fluctuations), then a strong scattering is observed (critical scattering) and the material becomes almost intransparent (critical opalescence).


The elastic scattering of light (the wave length is not changed by the scattering process – no loss of energy) is called Rayleigh Scattering (Rayleigh-Gans-Debye theory). It is the reason for the blue colour of the sky. Is energy exchanged during the scattering process and the wave length of the scattered light altered this is called Raman Scattering and is an inelastic scattering process. Scattering by transparent particles is called Mie Scattering (aerosols: rain drops, rainbow), scattering by solid particles is called Tyndall Scattering.I  


The dipoles which are induced in the scattering centre by the incident beam are parallel to the polarization of the incident beam. The secondary radiation is then emitted predominantly orthogonal to this axis with a polarization parallel to the oscillating dipoles. The dipolar radiation is strongly frequency dependent (((4) so that blue light shows a higher scattering intensity compared with red light. That is why the sky is blue.


The intensity of the scattered light carries information about the molar mass of the scattering centres (molecules, in particular macromolecules), the angular dependence of the scattering intensity carries information about the size of the macromolecule. The scattering pattern can be calculated for certain shapes of the scattering particles and then be compared with the experiment. The shape cannot be directly concluded from the scattering pattern (because the phase relation is lost during the scattering process).


For molecules which are very small compared with the wave length of the incident light the scattering intensity in the plane perpendicular to the plane of the electric vector of the incident electromagnetic wave is practically angular independent. When the molecules are larger, emitted secondary waves from different parts of the scattering particle interfere with each other. This makes a phase shift between the individual beams likely and hence constructive and destructive interference, depending on the phase of the interfering radiation. The polymer chain can be symbolized as a string of pearls with individual small scattering centres, which are not independent of each other since they form a chain that coils up. This coil has a centre of gravity and the coil can be described by the mean-distance of the parts of the coil from its centre of gravity. The size of the coil is then given as the root-mean-square radius of gyration (rg2( . It is a measure of the size of the scattering particle weighted by the mass distribution about its centre of gravity. With knowledge of the conformation (random coil
, rod) it can be related to the geometrical dimensions of the particle.  

Theory


Light can be described as an electro-magnetic wave consisting of an electric field vector and a magnetic field vector at an angle of 90° which propagate though time and space. As for any other such wave (also the wave on the surface of water) the wave is described by the wave equation:
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(5)

For simplicity the coordinates x, y and z which describe the position in space are combined to one space-coordinate X that identifies the position in space. The complete wavefunction reads:
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(6a-c)
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maximal amplitude of the oscillation 

 (= angular frequency 

 t = time

 ( = frequency

 T = time required for 1 oscillation

c = velocity of the wave, here the velocity of light

Only the vector of the electric field needs to be considered so that the wavefunction for the electric field reads:
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(7)
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Fig. 2: The absolute value E of the electric field vector E with the maximal amplitude 
[image: image8.wmf]E

ˆ

.

When these oscillations of the electric field vector meet the electrons of matter the electrons are forced into oscillations. These forced oscillations depend on the resonance frequency of the oscillator that is forced into action, see introduction to "Circular Dichroism".


The oscillating electron cloud of the matter is an oscillating (induced) Hertzian dipole (ind which goes proportional with the polarizability
 ( of the electron system.
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(8)

The Hertzian dipole emits radiation with a field strength E proportional to the acceleration
 of the oscillating electrons. The orientation of this dipole is parallel with the plane of the electric vector of the emitted radiation, so that the highest field strengths of polarized radiation is emitted normal to the oscillating dipole. The intensity of the emitted radiation decreases proportional with the distance from the oscillator, so that the field strength of the emitted (scattered) light from small particles
 observed at an angle of ( = 90° (see fig. 1) is given by:
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(9)

The measurable intensity of any wave is proportional to the square of the amplitude, so that the rate of the scattered intensity Iscat and the incident intensity I0 is given by
:
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(10)

The Clausius-Mosotti equation provides a correlation between the macroscopically defined value of the refractive index n and the microscopicallz defined polarizability ( and reads in a simplified form
:
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(11a-c)

n0 is the refractive index of the pure solvent, N is the number of particles, NL is the Loschmidt (or Avogadro) constant.

Finally, the Rayleigh equation for small (rigid) particles in solution reads (after normalizaion with respect to the  scattering volume Vscat):
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(12)

The term R(  is called the Rayleigh factor.The constant values in eq. 12 are combined giving the familiar equation:
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(13)

However, eq. 13 is only true for very small rigid objects. In case of dilute solutions of polymers, however, he scattering particles are (usually) fluctuating coils which means that the concentration of coil segments within the coil varies at random. This causes a fluctuation of ( and hence the local refractive index n and of the polarizability (. All follows from Clausius-Mosotti. Consequently, the eq. 10, respectively the Rayleigh equation eq. 12 have to be modified in a way that the variation ( has to be used for the fluctuating parameters. With application of Boltzmann statistics for the fluctuations and averaging. The important result for the concentration is:
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(14)

( is the osmotic pressure of the solution. Note that it has to be averaged over ((2 because the average (((( = 0.


The Flory-Huggins-Staverman mean-field lattice theory of polymer solutions
 gives:
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so that there is finally
:
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(16)

A2 is called the second virial coefficient (of polymer solvent interaction) and is correlated with the Flory-Huggins-Staverman polymer-solvent interaction parameter ( (see eq. 17 and 18) and can be used as a measure of the solvent quality
. 
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Fig. 3: the different interaction energies uij. Index 1 (solvent), index 2 (polymer). The term z in eq. 17 gives the number of solvent molecules around a polymer molecule (coordination number). 
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(17)
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(18)

A solution with A2 = 0 is termed to be in the (-state where the polymer coil obtains its unpertubed dimensions (compared with the dimensions in vacuum). In a good solvent, ( ( 0.5, the coil swells, in a system with an interaction parameter  ( (0.5 the coil collapses.


Effectively, there is interference of the emitted radiation from all parts of a scattering particle. This is in particular important if the particle has an anisotropy of shape, like a rod or a disc. Consideration of these phenomena is accomplished by introduction of the shape-factor P(q). In case of a random coil this is given by:
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(19)

and eq. 16 becomes:
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(20)

Plotting 
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 (see eq. 3)-the factor a is a fit parameter to adjust the scale, i) with concentrations ( as independent variable and the scattering angle ( as parameter and extrapolate to 
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 and ii) with the scattering angle ( as independent variable and the mass concentration ( as parameter and extrapolate to 
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 results in the Zimm-diagram which delivers on the extrapolation ((0 and ((0 (rg( from one limiting slope and 2A2 from the other and 1/(Mw( at the common intercept, see Fig. 4.
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Fig. 4: Zimm-diagram. The blue lines were obtained at different constant scattering angles as parameter and the bottom red line is the extrapolation to ( ( 0 limit, the slope delivers 2A2. The black lines were obtained at different constant concentrations as parameter and the left red line is the extrapolation to ( ( 0, the slope delivers (rg(. The molar mass M is in fact a mass average molar mass. For the definition of q see eq. 3, the factora is an adjustable constant to bring both variables to the same scale.
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� Vectors are written in bold, so that q means� EMBED Equation.3  ���, and q = � EMBED Equation.3  ��� 


� A random coil has a shape that comes close to a bean


� The polarizability is a measure of the ease of distorsion of the electron cloud of a molecular entity by an electric field. 


� the acceleration is the second derivative with respect to the time � EMBED Equation.3  ���


� small means particles with a diameter smaller than 1/20 of the wave length of the incident light.  


� As long as there is no superposition with light emitted from other parts of the particle. This, however, is granted if the particles are sufficiently small.


� Usually the Clausius-Mosotti equation is written as: � EMBED Equation.3  ���, where N is the number of molecules and ( is the dielectrical constant that is correlated with the refractive index by ( = n2


� k = 1.3807(10-23JK-1 is the Boltzmann-constant. k ( NL = R.  R = 8.3144 J mol-1K-1 is the universal gas constant, NL = 6.022 ( 1023is the Loschmidt- orAvogadro constant. While R is a molar quantity (see unit), k refers to a particle (molecule or atom).


� developed from the Bragg-Williams model for an ideal solution


� in reality only true for ( ( 0, see later


� ( ( 0.5 means a bad respectively non-solvent.
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